当前位置:首页 > 实用文 > 教案

有理数的除法教案

时间:2024-05-30 11:58:23
有理数的除法教案

有理数的除法教案

作为一位不辞辛劳的人民教师,就难以避免地要准备教案,编写教案助于积累教学经验,不断提高教学质量。我们应该怎么写教案呢?以下是小编帮大家整理的有理数的除法教案,欢迎大家分享。

有理数的除法教案1

教学目标

1.理解有理数除法的意义,熟练掌握有理数除法法则,会进行运算;

2.了解倒数概念,会求给定有理数的倒数;

3.通过将除法运算转化为乘法运算,培养学生的转化的思想;通过运算,培养学生的运算能力。

教学建议

(一)重点、难点分析

本节教学的重点是熟练进行运算,教学难点 是理解法则。

1.有理数除法有两种法则。法则1:除以一个数等于乘以这个数的倒数。是把除法转化为乘法来解决问题。法则2是把有理数除法纳入有理数运算的统一程序:一确定符号;二计算绝对值。如:按法则1计算:原式;按法则2计算:原式。

2.对于除法的两个法则,在计算时可根据具体的情况选用,一般在不能整除的情况下应用第一法则。如;在有整除的情况下,应用第二个法则比较方便,如;在能整除的情况下,应用第二个法则比较方便,如,如写成就麻烦了。

(二)知识结构

(三)教法建议

1.学生实际运算时,老师要强调先确定商的符号,然后在根据不同情况采取适当的方法求商的绝对值,求商的绝对值时,可以直接除,也可以乘以除数的倒数。

2.关于0不能做除数的问题,让学生结合小学的知识接受这一认识就可以了,不必具体讲述0为什么不能做除数的理由。

3.理解倒数的概念

(1)根据定义乘积为1的两个数互为倒数,即:,则互为倒数。如:,则2与,-2与互为倒数。

(2)由倒数的定义,我们可以得到求已知数倒数的一种基本方法:即用1除以已知数,所得商就是已知数的倒数。如:求的倒数:计算,-2就是的倒数。一般我们求已知数的倒数很少用这种方法,实际应用时我们常把已知数看作分数形式,然后把分子、分母颠倒位置,所得新数就是原数的倒数。如-2可以看作,分子、分母颠倒位置后为,就是的倒数。

(3)倒数与相反数这两个概念很容易混淆。要注意区分。首先倒数是指乘积为1的两个数,而相反数是指和为0的两个数。如:,2与互为倒数,2与-2互为相反数。其次互为倒数的两个数符号相同,而互为相反数符号相反。如:-2的倒数是,-2的相反数是+2;另外0没有倒数,而0的相反数是0。

4.关于倒数的求法要注意:

(1)求分数的倒数,只要把这个分数的分子、分母颠倒位置即可.

(2)正数的倒数是正数,负数的倒数仍是负数.

(3)负倒数的定义:乘积是-1的两个数互为负倒数.

教学设计示例

一、素质教育目标

(一)知识教学点

1.了解有理数除法的定义.

2.理解倒数的意义.

3.掌握有理数除法法则,会进行运算.

(二)能力训练点

1.通过有理数除法法则的导出及运算,让学生体会转化思想.

2.培养学生运用数学思想指导思维活动的`能力.

(三)德育渗透点

通过学习有理数除法运算、感知数学知识具有普遍联系性、相互转化性.

(四)美育渗透点

把小学算术里的乘法法则推广到有理数范围内,体现了知识体系的完整美.

二、学法引导

1.教学方法:遵循启发式教学原则,注意创设问题情境,精心构思启发导语 并及时点拨,使学生主动发展思维和能力.

2.学生学法:通过练习探索新知→归纳除法法则→巩固练习

三、重点、难点、疑点及解决办法

1.重点:除法法则的灵活运用和倒数的概念.

2.难点:有理数除法确定商的符号后,怎样根据不同的情况来取适当的方法求商的绝对值.

3.疑点:对零不能作除数与零没有倒数的理解.

四、课时安排

1课时

五、教具学具准备

投影仪、自制胶片、彩粉笔.

六、师生互动活动设计

教师出示探索性练习,学生讨论归纳除法法则,教师出示巩固性练习,学生以多种形式完成.

七、教学步骤

(一)创设情境,复习导入

师:以上我们学习了有理数的乘法,这节我们应该学习,板书课题.

【教法说明】同小学算术中除法一样—除以一个数等于乘以这个数的倒数,所以必须以学好求一个有理数的倒数为基础学习.

(二)探索新知,讲授新课

1.倒数.

(出示投影1)

4×( )=1; ×( )=1; 0.5×( )=1;

0×( )=1; -4×( )=1; ×( )=1.

学生活动:口答以上题目.

【教法说明】在有理数乘法的基础础上,学生很容易地做出这几个题目,在题目的选择上,注意了数的全面性,即有正数、0、负数,又有整数、分数,在数的变化中,让学生回忆、体会出求各种数的倒数的方法.

师问:两个数乘积是1,这两个数有什么关系?

学生活动:乘积是1的两个数互为倒数.(板书)

师问:0有倒数吗?为什么?

学生活动:通过题目0×( )=1得出0乘以任何数都不得1,0没有倒数.

师:引入负数后,乘积是1的两个负数也互为倒数,如-4与,与互为倒数,即的倒数是.

提出问题:根据以上题目,怎样求整数、分数、小数的倒数?

【教法说明】教师注意创设问题情境,让学生参与思考,循序渐进地引出,对于有理数也有倒数是.对于怎样求整数、分数、小数的倒数,学生还很难总结出方法,提出这个问题是让学生带着问题来做下组练习.

(出示投影2)

求下列各数的倒数:

(1); (2); (3);

(4); (5)-5; (6)1.

学生活动:通过思考口答这6小题,讨论后得出,求整数的倒数是用1除以它,求分数的倒数是分子分母颠倒位置;求小数的倒数必须先化成分数再求.

2.

计算:8÷(-4).

计算:8×()=? (-2)

∴8÷(-4)=8×().

再尝试:-16÷(-2)=? -16×()=?

师:根据以上题目,你能说出怎样计算吗?能用含字母的式子表示吗?

学生活动:同桌互相讨论.(一个学生回答)

师强调后板书:

[板书]

【教法说明】通过学生亲自演算和教师的引导,对有理数除法法则及字母表示有了非常清楚的认识,教师放手让 ……此处隐藏11320个字……5有理数的除法

(第5课时)

一、教学目标:

1、学会用计算器进行有理数的除法运算.

2、掌握有理数的混合运算顺序.

3、通过探究、练习,养成良好的学习习惯

二、教学重点和难点

1、学习重点:有理数的混合运算

2、学习难点:运算顺序的确定与性质符号的处理

三、教学过程

(一)、学前准备

1、计算

1)(0.0318)(1.4) 2)2+(8)2

(二)、探究新知

1、由上面的问题1,计算方便吗?想过别的方法吗?

2、由上面的问题2,你的计算方法是先算 乘除 法,再算 加减 法。

3、结合问题1,阅读课本P36P37页内容(带计算器的同学跟着操作、练习)

4、结合问题2,你先猜想,有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

5、阅读P36,并动手做做

三、新知应用

1、计算

1)、186(2) 2)11+(22)3(11)

3)(0.1) (100)

四.课堂小结:请你回顾本节课所学习的主要内容:

1、有理数的混合运算顺序应该是 先算乘除法,再算加减法 。

2、计算器的使用。

五、作业 1、P39第7题(4、5、7、8)、 第8题

有理数的除法教案13

一、课题 §2.9有理数的除法

二、教学目标

1.使学生理解有理数倒数的意义;

2.使学生掌握有理数的除法法则,能够熟练地进行除法运算;

3.培养学生观察、归纳、概括及运算能力.

三、教学重点和难点

重点:有理数除法法则.

难点:(1)商的符号的确定.

(2)0不能作除数的理解.

四、教学手段

现代课堂教学手段

五、教学方法

启发式教学

六、教学过程

(一)、从学生原有认知结构提出问题

1.叙述有理数乘法法则.

2.叙述有理数乘法的运算律.

3.计算:

(1)3×(-2); (2)-3×5; (3)(-2)×(-5).

(二)、导入新课

因为3×(-2)=-6,所以3x=-6时,可以解得x=-2;

同样-3×5=-15,解简易方程-3x=-15,得x=5.

在找x的值时,就是求一个数乘以3等于-6;或者是找一个数,使它乘以-3等于-15.已知一个因数的积,求另一个因数,就是在小学学过的除法,除法是乘法的逆运算.

三、讲授新课

1.有埋数的倒数

0没有倒数,(0不能作除数,分母是0没有意义等概念在小学里是反复强调的.)

提问:怎样求一个数的倒数?

答:整数可以看成分母是1的分数,求分数的倒数是把这个数的分母与分子颠倒一下即可;求一个小数的倒数,可以先把这个小数化成分

数再求倒数.

什么性质

所以我们说:乘积为1的两个数互为倒数,这个定义对有理数仍然适用.

这里a≠0,同小学一样,在有理数范围内,0不能作除数,或者说0为分母时分数无意义.

2.有理数除法法则

利用有理数倒数的概念,我们进一步学习有理数除法.

因为(-2)×(-4)=8,所以8÷(-4)=-2.

由此,我们可以看出小学学过的除法法则仍适用于有理数除法,即

除以一个数等于乘以这个数的倒数.

0不能作除数.

例1 计算:

课堂练习

(1)写出下列各数的倒数:

(2)计算:

3.有理数除法的符号法则

观察上面的'练习,引导学生总结出有理数除法的商的符号法则:

两数相除,同号得正,异号得负.

掌握符号法则,有的题就不必再将除数化成倒数再去乘了,可以确定符号后直接相除,这就是第二个有理数除法法则:

两数相除,同号得正,异号得负,并把绝对值相除.

0除以任何一个不为0的数,都得0.

≠0).利用除法法则可以化简分数.

例2 化简下列分数:

例3 计算:

(4)(-7)÷3-20÷3(-7-20)÷3=(-27)÷3=-9.

(四)、小结

1.指导学生看书,重点是除法法则.

2.引导学生归纳有理数除法的一般步骤:(1)确定商的符号;(2)把除数化为它的倒数;(3)利用乘法计算结果.

七、练习设计

习题2.12 1、2、3、4、5、6题

八、板书设计

§2.9有理数的除法

(一)知识回顾 (三)例题解析 (五)课堂小结

例1、例2

(二)观察发现 (四)课堂练习 练习设计

,七年级数学上册北师大版2.9有理数的除法教案

有理数的除法教案14

一、知识与技能

(1)会用计算器计算有理数的除法运算。

(2)掌握有理数的加减乘除混合运算。

二、过程与方法

通过本节课的数学活动,培养学生分析问题,综合应用知识解决实际问题的能力。

三、情感态度与价值观

培养学生动手操作能力,体会数学知识的.应用价值。

教学重、难点与关键

1.重点:掌握有理数的加减乘除混合运算。

2.难点:符号的确定。

3.关键:掌握运算顺序以及运算法则。

四、教学过程、课堂引入

1、在小学里,加减乘除四则运算的顺序是怎样的?

先乘除后加减,同级运算从左往右依次进行,有括号的,先算括号内的,另外还要注意灵活应用运算律。 有理数加减、乘除混合运算顺序与数的运算顺序一样。

五、新授

例8.计算:(1)-8+4(-2);

(2)(-7)(-5)-90(-15)。

分析:(1)按运算顺序,先做除法,再做加法。(2)先算乘、除法,然后做减法。

解:(1)-8+4(-2)

=-8+(-2) =-10

(2)(-7)(-5)-90(-15)

=35-(-6)=35+6=41

例9:某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈利情况如何?

分析:盈利与亏损是具有相反意义的量,我们把盈利额记为正数,亏损额记为负数,那么公司去年全年亏盈额就是去年1~12月的所亏损额和盈利额的和。

《有理数的除法教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式